
INSTRUCTIONS FOR THE ONLINE MIDTERM ICL EVALUATION

Dear all,

23 November 2020 (11:00), you will start the midterm evaluation session.

A zoom session will be opened at 11:00 (usual ICL 2020 link).

After that, I will open a (google) form that you will need to fill and submit.

The web link is here (clickable)

https://docs.google.com/forms/d/e/1FAIpQLSeL1uUUPybsNo0cN9b31F651b7I1Qp4nXgYNZ92qxBGypL42A/viewform	

The form only contains the fields for you to write down the answers, not the
questions. There are four questions (some with several items)

The questions will be available in a PDF file uploaded to the CLIP before the
test starts.

To access the form you will need to authenticate with
your official student FCT NOVA email, which will be recorded in the form.

---@campus.fct.unl.pt

The evaluation will take place 11:15-13:00.

You may edit and re-submit your form several times until the end of the test.

During the evaluation, I will be answering questions on the zoom chat.

Thanks, all the best

Luis Caires
	 	

Interpretation	and	Compilation		/	MIEI	/	FCT	UNL		
	

ONLINE	Midterm	Test	2020	
	
ZERO.	The	abstract	syntax	tree	for	expression	2+3	may	be	constructed	in	Java	by	
	
	 	 new	ASTAdd(new	ASTNum(2),	new	ASTNum(3))	
	
using	our	standard	AST	model.	In	the	same	way,	indicate	Java	code	for	
constructing	abstract	syntax	trees	for	the	expressions:	
	

(a) 2*3+1*2	
(b) –(2+(4+3))	
(c) (2+4)*3	

	
ONE.	Consider	the	basic	language	we	have	studied	in	the	course,	and	the	
programs.	For	each	program,	indicate	the	result	of	its	evaluation	and	the	state	of	
the	environment	at	the	point	where	the	boxed	expressions	start	to	be	evaluated.	
	
def	x=1	y=2	in	
			def	z	=	x+y	w	=	x-y	in	
					z	+	w	
			end		
end	
	
def		x	=	10	in		
		(def	x	=	1	in	x	+	x	end)	*	(def	y	=	1	in	x	+	y	end)	
end	
	
NOTE:	To	draw	the	state	of	an	environment	use	a	notation	like	
	
				[a->	0,	b	->	4,	c	->	6]	
	
				[x->	5,	z	->	9]	
	
				[i	->	0]	 	 	 (<=	env	top	level)	
	
Here	we	have	represented	an	environment	with	three	levels,	in	which	identifier	i	
is	declared	in	the	level	at	the	top	level	(top	of	“stack”)	
	
TWO.	Consider	the	following	expression	language	based	on	the	basic	language	
we	have	studied	in	the	course,	but	where	now	we	have	“structured	identifiers”	
	
SId		 ::=		id	|	up	SId		 	 	 	
E		 ::	=	num	|	SId	|	E	+	E	|	E	–	E	|	E	*	E	|	def	(Id	=	E)+	in	E	end	
	
Structured	identifiers	have	the	form	up	…	up	Id	where	Id	is	a	simple	identifier	as	
in	the	basic	language,	and	up	is	a	unary	operator.		
	

An	example	of	a	program	is	
	
def	x=2	y=1	in	 	 	 	 	
			def	z	=	x+y	x	=	x	-	y	in	 	 	 	
					def	y	=		z	+x	in	 	 	 	 	
									y	+	up	y		
					end	
			end		
end	
	
This	program	evaluates	to	6,	which	is	the	value	of	the	body	y	+	up	y.	In	this	
expression	x	+	up	y,	while	y	evaluates	to	5,	(up	y)	evaluates	to	1,	which	is	the	
value	of	y	in	the	first	enclosing	outer	scope.	In	general,	a	sequence	of	K	up’s	
prefixing	a	simple	identifier	X	denotes	the	value	of	X	in	the	K	-th	outer	scope.	
	
Explain	how	you	would	extend	your	interpreter	in	order	to	add	the	up	operator	
to	the	language	with	expressions.	Explain	briefly	but	clearly	
	

1. additions	to	the	language	grammar,		
2. additions	to	the	abstract	syntax,	in	particular	write	the	class	ASTUp.		
3. define	the	eval	method	for	the	class	ASTUp	
4. any	modifications	to	the	environment	class,	if	needed.		

	
THREE.	Consider	the	compiler	for	the	language	with	definitions.		
	

(a) Indicate	all	the	JVM	code	generated	for	the	program	
	
def	y	=	1	in	
			def	x	=	2	in	
								x	+	y	
		end	
end	

	
(b) Consider	a	compiler	to	the	language	in	TWO,	which	only	involves	the	

definition	of	a	method	compile	to	the	class	ASTUp.	
	
Indicate	the	JVM	code	that	should	be	generated	for	the	following	program	
(in	the	main	you	only	need	to	indicate	the	code	between	START	and	END)	
	
def	z	=	1	in	
			def	z	=	2	in	
								z	+	up	z	
		end	
end	

	
(c) Write	the	code	for	the	compile	method	in	class	ASTUp,	with	signature	

	
void	compile(CodeBlock	c,	Env	e)	

	

